LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hypoxia Produces Pro-arrhythmic Late Sodium Current in Cardiac Myocytes by SUMOylation of NaV1.5 Channels

Photo by nci from unsplash

SUMMARY Acute cardiac hypoxia produces life-threatening elevations in late sodium current (ILATE) in the human heart. Here, we show the underlying mechanism: hypoxia induces rapid SUMOylation of NaV1.5 channels so… Click to show full abstract

SUMMARY Acute cardiac hypoxia produces life-threatening elevations in late sodium current (ILATE) in the human heart. Here, we show the underlying mechanism: hypoxia induces rapid SUMOylation of NaV1.5 channels so they reopen when normally inactive, late in the action potential. NaV1.5 is SUMOylated only on lysine 442, and the mutation of that residue, or application of a deSUMOylating enzyme, prevents hypoxic reopenings. The time course of SUMOylation of single channels in response to hypoxia coincides with the increase in ILATE, a reaction that is complete in under 100 s. In human cardiac myocytes derived from pluripotent stem cells, hypoxia-induced ILATE is confirmed to be SUMO-dependent and to produce action potential prolongation, the pro-arrhythmic change observed in patients.

Keywords: cardiac myocytes; late sodium; sumoylation nav1; sodium current; hypoxia produces; nav1 channels

Journal Title: Cell reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.