LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Synaptic Vesicle Priming Protein CAPS-1 Shapes the Adaptation of Sensory Evoked Responses in Mouse Visual Cortex.

Photo from wikipedia

Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle… Click to show full abstract

Short-term plasticity gates information transfer across neuronal synapses and is thought to be involved in fundamental brain processes, such as cortical gain control and sensory adaptation. Neurons employ synaptic vesicle priming proteins of the CAPS and Munc13 families to shape short-term plasticity in vitro, but the relevance of this phenomenon for information processing in the intact brain is unknown. By combining sensory stimulation with in vivo patch-clamp recordings in anesthetized mice, we show that genetic deletion of CAPS-1 in thalamic neurons results in more rapid adaptation of sensory-evoked subthreshold responses in layer 4 neurons of the primary visual cortex. Optogenetic experiments in acute brain slices further reveal that the enhanced adaptation is caused by more pronounced short-term synaptic depression. Our data indicate that neurons engage CAPS-family priming proteins to shape short-term plasticity for optimal sensory information transfer between thalamic and cortical neurons in the intact brain in vivo.

Keywords: vesicle priming; adaptation sensory; sensory evoked; adaptation; short term; synaptic vesicle

Journal Title: Cell reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.