LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Demyelination Regulates the Circadian Transcription Factor BMAL1 to Signal Adult Neural Stem Cells to Initiate Oligodendrogenesis.

Photo from wikipedia

Circadian clocks are endogenous oscillators that generate cell-autonomous rhythms that govern cellular processes and are synchronized by external cues in the local macro- and micro-environments. Demyelination, a common brain pathology… Click to show full abstract

Circadian clocks are endogenous oscillators that generate cell-autonomous rhythms that govern cellular processes and are synchronized by external cues in the local macro- and micro-environments. Demyelination, a common brain pathology with variable degrees of recovery, changes the microenvironment via damaged myelin and activation of glial cells. How these microenvironmental changes affect local circadian clocks and with what consequences is mostly unknown. Here, we show that within demyelinating lesions, astrocyte circadian clocks produce the Wnt inhibitors SFRP1 and SFRP5. Unexpectedly, SFRP1 and SFRP5 signal to the subventricular zone (SVZ) to reduce the circadian transcription factor BMAL1. This sequence of events causes adult neural stem cells in the SVZ to differentiate into oligodendrocyte lineage cells, which are then supplied to demyelinated lesions. Our findings show that circadian clocks in demyelinating lesions respond to microenvironmental changes and communicate with the SVZ to enhance a natural repair system of spontaneous remyelination.

Keywords: adult neural; circadian transcription; transcription factor; circadian clocks; factor bmal1; neural stem

Journal Title: Cell reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.