LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations

Photo by nci from unsplash

The novel betacoronavirus SARS-CoV-2 causes a form of severe pneumonia disease, termed COVID-19. To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant… Click to show full abstract

The novel betacoronavirus SARS-CoV-2 causes a form of severe pneumonia disease, termed COVID-19. To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a sub nM IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the hACE2 mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11 derived human IgG1 with FcγR silenced Fc (COR-101) is currently undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.

Keywords: covid patients; antibody; ste90 c11; sars cov; rbd mutations; ace2 rbd

Journal Title: Cell Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.