Mitochondria are principal metabolic organelles that are increasingly unveiled as immune regulators. However, it is currently not known whether mitochondrial-encoded peptides modulate T cells to induce changes in phenotype and function.… Click to show full abstract
Mitochondria are principal metabolic organelles that are increasingly unveiled as immune regulators. However, it is currently not known whether mitochondrial-encoded peptides modulate T cells to induce changes in phenotype and function. In this study, we found that MOTS-c (mitochondrial open reading frame of the 12S rRNA type-c) prevented autoimmune β cell destruction by targeting T cells in non-obese diabetic (NOD) mice. MOTS-c ameliorated the development of hyperglycemia and reduced islet-infiltrating immune cells. Furthermore, adoptive transfer of T cells from MOTS-c-treated NOD mice significantly decreased the incidence of diabetes in NOD-severe combined immunodeficiency (SCID) mice. Metabolic and genomic analyses revealed that MOTS-c modulated T cell phenotype and function by regulating T cell receptor (TCR)/mTOR complex 1 (mTORC1) signaling. Type 1 diabetes (T1D) patients had a lower serum MOTS-c level than did healthy controls. Furthermore, MOTS-c reduced T cell activation by alleviating T cells from the glycolytic stress in T1D patients, suggesting therapeutic potential. Our findings indicate that MOTS-c regulates the T cell phenotype and suppresses autoimmune diabetes.
               
Click one of the above tabs to view related content.