Most gene expression datasets generated by individual researchers are too small to fully benefit from unsupervised machine-learning methods. In the case of rare diseases, there may be too few cases available,… Click to show full abstract
Most gene expression datasets generated by individual researchers are too small to fully benefit from unsupervised machine-learning methods. In the case of rare diseases, there may be too few cases available, even when multiple studies are combined. To address this challenge, we utilize transfer learning to extract coordinated expression patterns and use learned patterns to analyze small rare disease datasets. We trained a pathway-level information extractor (PLIER) model on a large public data compendium comprising multiple experiments, tissues, and biological conditions and then transferred the model to small datasets in an approach we call MultiPLIER. Models constructed from the public data compendium included features that aligned well to known biological factors and were more comprehensive than those constructed from individual datasets or conditions. When transferred to rare disease datasets, the models describe biological processes related to disease severity more effectively than models trained only on a given dataset.
               
Click one of the above tabs to view related content.