LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of magnesia-modified sodium carbonate-activated slag/fly ash concrete

Photo from wikipedia

Various innovative research in the cement industry is looking into improving its environmental sustainability. Sodium carbonate-activated slag/fly ash (NC-SF) binders has recently evolved as a potentially more sustainable binding materials… Click to show full abstract

Various innovative research in the cement industry is looking into improving its environmental sustainability. Sodium carbonate-activated slag/fly ash (NC-SF) binders has recently evolved as a potentially more sustainable binding materials than both Portland cement and conventional alkali activated materials such as sodium silicate and sodium hydroxide activated materials. The reaction mechanism and some microstructural properties of NC-SF cements have been a major area of research recently. However, very few studies have scaled up the investigation of these binders into concrete specimens. This paper, therefore, provides new insight into the strength development and the durability performance of NC-SF concrete and MgO-modified NC-SF concrete. Concrete testing included measurements of compressive strength, split tensile strength, water absorption, depth of carbonation, sulphate exposure, acid exposure and elevated-temperature exposure. Microstructure studies were conducted using Powder X-Ray diffraction (PXRD), Thermogravimetric analysis (TGA) and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). It is concluded that NC-SF concrete mixes develop acceptable mechanical strength and demonstrate high resistance to sulphate attack. They also showed higher resistance to acid attack than the control mix based on sodium silicate-activated slag concrete. Here, emphasis is placed on the potential of developing NC-SF concrete with excellent performance and less complicated production methods as well as a low carbon footprint. It is also found that the use of reactive MgO enhanced the strength development of NC-SF concrete as well as its resistance to acid and carbonation.

Keywords: sodium carbonate; performance; carbonate activated; strength; concrete; activated slag

Journal Title: Cement and Concrete Composites
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.