LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rheological behavior of cement paste with nano-Fe3O4 under magnetic field: Magneto-rheological responses and conceptual calculations

Photo by galihnyb_06 from unsplash

Abstract The magneto-rheological responses of cement paste with nano-Fe3O4 particles are experimentally investigated. The estimated magneto-dynamic force between two neighboring nanoparticles and equilibrium movement velocity of the nanoparticles in cement-based… Click to show full abstract

Abstract The magneto-rheological responses of cement paste with nano-Fe3O4 particles are experimentally investigated. The estimated magneto-dynamic force between two neighboring nanoparticles and equilibrium movement velocity of the nanoparticles in cement-based suspensions are calculated. Results show that the nanoparticles have a potential to move to form magnetic clusters when a magnetic field is applied, which creates a sort of agitation effect breaking down the early C–S–H links between cement particles, and thus the corresponding suspensions exhibit liquid-like behavior immediately after applying the magnetic field. The solid-like property of the studied suspensions becomes more dominant with magnetizing time due to the formation of magnetic clusters and the reconstruction of C–S–H bridges. The rheological properties of paste medium exert significant influences on the magneto-rheological responses of cement paste containing nano-Fe3O4 particles. It is revealed that the calculated magnetic yield parameter and nanoparticle movement velocity are useful relevant indicators to evaluate the magneto-rheological effect of cementitious paste.

Keywords: nano fe3o4; paste; rheological responses; magnetic field; cement paste; magneto rheological

Journal Title: Cement and Concrete Composites
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.