Abstract Much is unknown about the reaction processes responsible for the formation and polycondensation of geopolymers and other alkali activated materials. In this work, isothermal calorimeter and in-situ XRD were… Click to show full abstract
Abstract Much is unknown about the reaction processes responsible for the formation and polycondensation of geopolymers and other alkali activated materials. In this work, isothermal calorimeter and in-situ XRD were adopted to study the heat and mineral evolution of NaOH activated fly ash, metakaolin and ground granulated blast furnace slag. Both activator concentration and temperature have profound influences on duration of exothermal geopolymerization peaks. NaOH activated fly ash is more temperature dependable, with much higher activation energy than metakaolin and slag. The dissolution of source precursor is rapid and the formation of new phases can be detected by the end of the initial dissolution period. The in-situ XRD measurement together with the PONKCS analysis method promotes quantitative estimation of amorphous evolution during alkali activation.
               
Click one of the above tabs to view related content.