LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preferred orientation of calcium aluminosilicate hydrate induced by confined compression

Photo by herosordinaires from unsplash

Abstract The existing macroscale models of the calcium (alumino)silicate hydrate (C-(A-)S-H), the main binder of concrete, assume that the nanocrystallites maintain random orientation under any loading conditions. However, using synchrotron-radiation-based… Click to show full abstract

Abstract The existing macroscale models of the calcium (alumino)silicate hydrate (C-(A-)S-H), the main binder of concrete, assume that the nanocrystallites maintain random orientation under any loading conditions. However, using synchrotron-radiation-based XRD, we report the development of preferred orientation of nanocrystalline C-A-S-H, from random at ambient pressure to strongly oriented under uniaxial compression with lateral confinement. The c-axes of the nanocrystals tend to align with the primary load. This preferred orientation is preserved after removing of external loading. The texture, quantified using a standard Gaussian fiber orientation distribution function (ODF), was used to calculate the averaged bulk elastic tensor of oriented C-(A-)S-H. It changes from isotropic (without texture) to transversely isotropic (with texture). Our results provide direct evidence of the reorientation of nanocrystalline C-(A-)S-H as a mesoscale mechanism to the irreversible deformation of cement-based material. The implications of these results for modeling the mechanical property of C-(A-)S-H at the macroscale are discussed.

Keywords: compression; orientation; calcium aluminosilicate; orientation calcium; hydrate; preferred orientation

Journal Title: Cement and Concrete Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.