LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Micropillar compression investigation of size effect on microscale strength and failure mechanism of Calcium-Silicate-Hydrates (C-S-H) in cement paste

Photo by rocinante_11 from unsplash

Abstract The compressive strength and failure of concrete and cement exhibit strong size effect over various length scales. To investigate possible size effect on compressive strength and failure mechanism of… Click to show full abstract

Abstract The compressive strength and failure of concrete and cement exhibit strong size effect over various length scales. To investigate possible size effect on compressive strength and failure mechanism of Calcium-Silicate-Hydrates (C-S-H) in cement paste, micropillar compression experiments were performed on micropillar geometries fabricated by focused ion beam milling on potential C-S-H locations identified through coupled backscatter electron imaging (BSE) and energy dispersive spectroscopy (EDS) analysis. The compressive strength of C-S-H (181–1145 MPa) measured from C-S-H micropillars of varying diameters indicated presence of a size effect with strong increase in strength with decreasing diameter. The deformation mode at failure also exhibited size effect: the dominant failure mode changed from axial splitting to plastic crushing as the pillar diameter was decreased. The observed relationship between strength and pillar diameter can be modeled by an inverse square root dependency which closely corresponds to Bazant's scaling law of quasi-brittle failure.

Keywords: strength; failure; size effect; strength failure

Journal Title: Cement and Concrete Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.