LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural refinement of cement paste internally cured by polyacrylamide composite hydrogel particles containing silica fume and nanosilica

Photo from wikipedia

Abstract Supplementary cementitious materials were incorporated into hydrogel-based internal curing agents to improve the hydration, microstructure, and ultimately strength of internally cured high-performance cement paste. Polyacrylamide composite hydrogel particles containing… Click to show full abstract

Abstract Supplementary cementitious materials were incorporated into hydrogel-based internal curing agents to improve the hydration, microstructure, and ultimately strength of internally cured high-performance cement paste. Polyacrylamide composite hydrogel particles containing amorphous silica – either silica fume or nanosilica – and two different polymer network crosslink densities were synthesized and incorporated into cement paste. The presence of silica and low crosslink density increased the absorption capacity of the particles in pore solution. Micrographs of internally cured paste indicated a significant improvement in hydrogel-related void-filling ability and an increase in void size for low crosslink density particles containing silica. Compressive strength and electrical resistivity increased at later ages for paste samples containing particles with higher silica dosage. The relationship between extent of hydration, void size, and void-filling activity was found to strongly influence the paste's long-term strength and is thus an important structure-property relationship to consider when selecting hydrogels for internal curing purposes.

Keywords: internally cured; silica; paste; particles containing; cement paste

Journal Title: Cement and Concrete Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.