Abstract Porous cobalt oxide (Co3O4) nanocubes (NCs) were synthesized by a simple and cost-effective hydrothermal technique for the potential application of electrochemical supercapacitors. The hydrothermally synthesized materials exhibited the small… Click to show full abstract
Abstract Porous cobalt oxide (Co3O4) nanocubes (NCs) were synthesized by a simple and cost-effective hydrothermal technique for the potential application of electrochemical supercapacitors. The hydrothermally synthesized materials exhibited the small cube like morphology with the average size of ~ 50 to 60 nm. The surface analysis revealed a good surface area, and high pore volume of the synthesized porous Co3O4 NCs. The capacitive properties of porous Co3O4 NCs electrode were investigated by cyclic voltammetry (CV) in 6 M KOH electrolyte and a high specific capacitance of ~ 430.6 F/g at a scan rate of ~ 10 mV s−1 was observed. The capacity retention of up to ~ 85% after 1000 cycles was shown by the fabricated porous Co3O4 NCs electrode. The porous Co3O4 NCs showed excellent structural stability through cycling with promising capacity retention which suggested a good quality of porous Co3O4 NCs as electrochemical supercapacitor electrode.
               
Click one of the above tabs to view related content.