LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor

Photo by timothycdykes from unsplash

Abstract Porous cobalt oxide (Co3O4) nanocubes (NCs) were synthesized by a simple and cost-effective hydrothermal technique for the potential application of electrochemical supercapacitors. The hydrothermally synthesized materials exhibited the small… Click to show full abstract

Abstract Porous cobalt oxide (Co3O4) nanocubes (NCs) were synthesized by a simple and cost-effective hydrothermal technique for the potential application of electrochemical supercapacitors. The hydrothermally synthesized materials exhibited the small cube like morphology with the average size of ~ 50 to 60 nm. The surface analysis revealed a good surface area, and high pore volume of the synthesized porous Co3O4 NCs. The capacitive properties of porous Co3O4 NCs electrode were investigated by cyclic voltammetry (CV) in 6 M KOH electrolyte and a high specific capacitance of ~ 430.6 F/g at a scan rate of ~ 10 mV s−1 was observed. The capacity retention of up to ~ 85% after 1000 cycles was shown by the fabricated porous Co3O4 NCs electrode. The porous Co3O4 NCs showed excellent structural stability through cycling with promising capacity retention which suggested a good quality of porous Co3O4 NCs as electrochemical supercapacitor electrode.

Keywords: co3o4 ncs; electrochemical supercapacitor; porous co3o4; cobalt oxide

Journal Title: Ceramics International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.