LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polarization-induced electro resistance and magneto resistance in La0.67Ca0.33MnO3/BaTiO3 composite film

Photo by enchaxcreative from unsplash

Abstract La0.67Ca0.33MnO3/BaTiO3 composite films have been grown on Nb-doped SrTiO3 substrates by the sol–gel method. The magnetic and ferroelectric properties in the composite films are investigated. A three-state memory is… Click to show full abstract

Abstract La0.67Ca0.33MnO3/BaTiO3 composite films have been grown on Nb-doped SrTiO3 substrates by the sol–gel method. The magnetic and ferroelectric properties in the composite films are investigated. A three-state memory is formed by applying a vertical electric field across the La0.67Ca0.33MnO3/BaTiO3 heterostructure, this behavior is attributed to the polarization-mediated resistive switching effect. In addition, the transport properties of La0.67Ca0.33MnO3 thin film can be modulated by an external magnetic field, a 10.3 K shift of the metal insulator transition temperature is obtained with the change of applied magnetic field from 0 T to 6 T. Consequently, in La0.67Ca0.33MnO3/BaTiO3 heterostructure, the resistance behavior can be modulated by piezoelectric effect, ferroelectric polarization and magnetic field simultaneously.

Keywords: 67ca0 33mno3; polarization; resistance; 33mno3 batio3; la0 67ca0

Journal Title: Ceramics International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.