LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An easy and scalable approach to synthesize three-dimensional sandwich-like Si/Polyaniline/Graphene nanoarchitecture anode for lithium ion batteries

Photo by thenixcompany from unsplash

Abstract A new three-dimensional (3D) sandwich-like Si/Polyaniline/Graphene nanoarchitecture anode for lithium ion batteries (LIBs) is successfully fabricated through an easy approach. In this nanoarchitecture, the in-situ polymerized electronic conductive polyaniline… Click to show full abstract

Abstract A new three-dimensional (3D) sandwich-like Si/Polyaniline/Graphene nanoarchitecture anode for lithium ion batteries (LIBs) is successfully fabricated through an easy approach. In this nanoarchitecture, the in-situ polymerized electronic conductive polyaniline (PAni) hydrogel, acting as “glue”, agglutinates tightly to both the silicon nanoparticles (SiNPs) and graphene sheets, forming efficient conductive networks with high elastic modulus and high tensile strength. This mechanically robust nanoarchitecture can endure the great volume change of silicon and retain structural stability during Li-ion insertion/extraction. The electrodes consisting of this 3D sandwich-like Si/Polyaniline/Graphene nanoarchitecture reveal excellent electrochemical performance. The progress made in this work provides an easy and scalable route for preparing Si-based anode materials with high performance for advanced LIBs.

Keywords: sandwich like; polyaniline graphene; graphene nanoarchitecture; like polyaniline; nanoarchitecture

Journal Title: Ceramics International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.