Abstract A novel oscillatory pressure sintering (OPS) process to consolidate high-quality pure alumina ceramics is reported. The microstructure of the ceramics prepared by OPS develops into a higher final density,… Click to show full abstract
Abstract A novel oscillatory pressure sintering (OPS) process to consolidate high-quality pure alumina ceramics is reported. The microstructure of the ceramics prepared by OPS develops into a higher final density, a smaller and a narrower distribution of grain sizes compared with those prepared by conventional pressureless sintering (PS) and hot-pressing (HP) processes. Enhanced mechanical properties of alumina ceramics were investigated by OPS process. The bending strength, hardness and elastic modulus of the OPS specimen reached about 546 MPa, 19.1 GPa and 374 GPa, respectively, i.e values significantly higher than that of the specimens by PS and HP. XRD analysis indicates the strengthening of atomic bonds aided by oscillatory pressure. The results suggest OPS to be an effective technique for preparing high-quality pure alumina ceramics.
               
Click one of the above tabs to view related content.