LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AC susceptibility and Mossbauer study of Ce 3+ ion substituted SrFe 12 O 19 nanohexaferrites

Photo from wikipedia

Abstract Ce3+ ion substituted SrFe12O19, SrFe12-xCexO19 (0.0 ≤ x ≤ 0.5), nanohexaferrites were fabricated by citrate sol-gel combustion approach. X–ray diffractometry (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscope (EDX), EDX Elemental mapping, Fourier… Click to show full abstract

Abstract Ce3+ ion substituted SrFe12O19, SrFe12-xCexO19 (0.0 ≤ x ≤ 0.5), nanohexaferrites were fabricated by citrate sol-gel combustion approach. X–ray diffractometry (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscope (EDX), EDX Elemental mapping, Fourier transform infrared spectroscopy (FT-IR) were used to study the structure and morphology of the samples. AC magnetic susceptibility and 57Fe Mossbauer spectroscopy have been operated to examine the hyperfine structure, static and dynamic magnetic properties. The values of variations in line width, quadrupole splitting, hyperfine magnetic field, and isomer shift have been estimated. The impact of Ce-ion substitution on AC magnetic susceptibility properties of Sr-hexaferrite were explored. The AC-susceptibility measurements reveal the frequency dependence of the magnetic responses, indicating strong magnetic interactions among the nanoparticles of the various products. In addition, it is determined that the magnetic interaction between the nanoparticles is weakened in the substituted products, due to the substitution of Fe3+ ions by Ce3+ ions.

Keywords: susceptibility; mossbauer; study; ion substituted; spectroscopy

Journal Title: Ceramics International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.