LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of simultaneous K, and Yb substitution for Ca on the microstructural and thermoelectric characteristics of CaMnO3 ceramics

Photo from archive.org

Abstract CaMnO3-based materials are very attractive among n-type thermoelectric oxides for high-temperature applications when they are appropriately doped. The main drawback of these materials is the cost associated to the… Click to show full abstract

Abstract CaMnO3-based materials are very attractive among n-type thermoelectric oxides for high-temperature applications when they are appropriately doped. The main drawback of these materials is the cost associated to the necessary rare earth cations. This work aims decreasing the amount of these materials through a partial substitution of Ca2+ by an equimolar mixture of K+ and Yb3+, Ca1-x(K0.5Yb0.5)xMnO3, with x = 0.05, 0.10, 0.15, and 0.20. XRD studies have confirmed that the thermoelectric phase is the major one in all samples. Microstructure has shown the formation of large crystals, and an increasing porosity when the substitution is raised. This evolution has been confirmed through density measurements. Electrical resistivity has been drastically decreased for the 0.10 substituted samples, compared with the 0.05 ones, slightly increasing for higher substitution. On the other hand, absolute Seebeck coefficient and thermal conductivity are lower when the substitution is raised. The best ZT values have been achieved for the 0.10 substituted samples, which are around the typical reported in the literature for higher doping level. These results clearly point out to a decrease of the necessary rare earth dopant content to achieve similar performances in CaMnO3 ceramics, which is of the main economic significance for their industrial production.

Keywords: camno3 ceramics; substitution microstructural; simultaneous substitution; effect simultaneous; substitution; microstructural thermoelectric

Journal Title: Ceramics International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.