LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bi4Ti3O12 multilayered ceramic tapes produced by aqueous tape casting and laminating process: Structural and dielectric properties

Photo from wikipedia

Abstract In this work, multilayered bismuth titanate ceramic tapes engineered by combining aqueous tape casting and laminating process were produced. The structural and dielectric properties of green and sintered multilayered… Click to show full abstract

Abstract In this work, multilayered bismuth titanate ceramic tapes engineered by combining aqueous tape casting and laminating process were produced. The structural and dielectric properties of green and sintered multilayered materials, with 1–5 layers, were explored. Diffraction peaks related to the bismuth titanate phase of structure Bi4Ti3O12 were identified in the precursor powder and the green and the sintered tapes. In addition, a Bi2Ti2O7 structure phase was indexed to the sintered tape. Modifications of the dielectric behavior with the increase in the number of layers composing the samples and with the sintering procedure were observed. Considering the green multilayered BIT ceramics, values between 10 and 14 as a function of the distinct number of layer were found at 1.0 GHz. On the other hand, for the sintered BIT multilayered, values between 2.3 and 8.5 in a wide frequency range were observed, showing a constant behavior as a function of the employed frequency. The results provided interesting insights for tailoring the structural and dielectric properties of the multilayered bismuth titanate ceramic tapes, placing them as a promising candidate fulfilling the needs in a wide variety of technological applications.

Keywords: aqueous tape; structural dielectric; tape casting; dielectric properties; ceramic tapes

Journal Title: Ceramics International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.