LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low temperature atomic layer deposition of nickel sulfide and nickel oxide thin films using Ni(dmamb)2 as Ni precursor

Photo by nikolaijustesen from unsplash

Abstract Nickel(II) 1-dimethylamino-2-methyl-2-butoxide (Ni(dmamb)2) with water and hydrogen sulfide as oxygen and sulfur sources was employed in atomic layer deposition (ALD) of nickel oxide (NiO) and nickel sulfide (NiS) thin… Click to show full abstract

Abstract Nickel(II) 1-dimethylamino-2-methyl-2-butoxide (Ni(dmamb)2) with water and hydrogen sulfide as oxygen and sulfur sources was employed in atomic layer deposition (ALD) of nickel oxide (NiO) and nickel sulfide (NiS) thin films. Both NiO and NiS thin films demonstrate temperature-independent growth rates per cycle of 0.128 nm/cycle and 0.0765 nm/cycle, at 130–150 °C and 80–160 °C, respectively. Comparison of two nickel-based thin film materials demonstrates dissimilar deposition features depending on the reactivity of the Ni precursor, i.e., Ni(dmamb)2 with anion sources provided by the water and hydrogen sulfide reactants. Difference in reactivity observed for NiO and NiS ALD processes is further investigated by density functional theory (DFT) simulations of surface reactions, which indicated that H2S demonstrate higher reactivity with surface-adsorbed Ni precursor than H2O. The material properties of ALD NiO and NiS thin films including stoichiometry, crystallinity, band structure, and electronic properties were analyzed by multiple experimental techniques, showing potential of ALD NiS as electrode or catalyst for energy-oriented devices.

Keywords: thin films; atomic layer; deposition; nickel sulfide; layer deposition; nickel oxide

Journal Title: Ceramics International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.