Abstract This study investigated the effect of LiNbO3 modification on the dielectric, ferroelectric and electromechanical strain properties of Bi1/2Na1/2TiO3–SrTiO3 (BNT–ST) lead–free relaxor ceramics. The sintering temperature for lead–free BNT–ST relaxor… Click to show full abstract
Abstract This study investigated the effect of LiNbO3 modification on the dielectric, ferroelectric and electromechanical strain properties of Bi1/2Na1/2TiO3–SrTiO3 (BNT–ST) lead–free relaxor ceramics. The sintering temperature for lead–free BNT–ST relaxor ceramics was slightly decreased from 1175 °C to 1050 °C by modifying with LiNbO3. We found that the sintering temperature affects the dielectric behavior of 0.76BNT–(0.24−x)ST–xLiNbO3 (BNST–100xLN) ceramics at high temperature (near dielectric maximum temperature, Tm). The Tm for the low–temperature sintered sample was shifted to relatively higher temperature by comparison with the high–temperature sintered samples. Furthermore, the degradation of dielectric behavior near Tm in low–temperature sintered BNST–2LN ceramics was revealed after poling treatment and seem to be related to the existence of a high temperature stabilized nonergodic relaxor phase. Accordingly, we assume that the stabilized nonergodic relaxor phase is responsible for the relatively late transition from ferroelectrics to the relaxor. Therefore, we obtained the improved d33* of 616 pm/V as the highest value in low–temperature sintered BNST–2LN ceramics.
               
Click one of the above tabs to view related content.