LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rational design of electrochemically active polymorphic MnOx/rGO composites for Li+-rechargeable battery electrodes

Photo by edhoradic from unsplash

Abstract Electrochemical behavior of different MnOx @reduced graphene oxide (rGO) composites derived from a MnO2/GO template are thoroughly investigated. As-prepared MnO2/GO mixture is gradually converted to MnO2/rGO and finally to… Click to show full abstract

Abstract Electrochemical behavior of different MnOx @reduced graphene oxide (rGO) composites derived from a MnO2/GO template are thoroughly investigated. As-prepared MnO2/GO mixture is gradually converted to MnO2/rGO and finally to Mn3O4/rGO composites under controlled post annealing conditions. The semispherical Mn3O4 crystalline compound anchored composite exhibits stable electrode performances, including both the Li+ anode and the Li+-air cathode catalyst, induced by the electrochemically favorable composite with an effective large contact area between the active materials and the electronic conductive rGO. It is such a meaningful to suggest the facile and controllable synthetic procedures for obtaining Li-rechargeable electrodes with a MnOx nanoparticle-incorporated composites for the highly reactive lithiation/delithiation electrochemical reactions.

Keywords: mnox; rational design; rgo composites; rgo; design electrochemically; electrochemically active

Journal Title: Ceramics International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.