Abstract The yttrium heavily doped La2Zr2O7 solid solutions coatings, with a Y to La molar ratio of 1:1, have been successfully prepared by air plasma spraying technique. The evolution of… Click to show full abstract
Abstract The yttrium heavily doped La2Zr2O7 solid solutions coatings, with a Y to La molar ratio of 1:1, have been successfully prepared by air plasma spraying technique. The evolution of phase composition, phase structure and thermal conductivity of such coatings with annealing at 1300 °C has been investigated. The results show that, a single pyrochlore structure can be retained for coating after annealing up to 48 h, beyond which the fluorite phase begins to precipitate out. By comparing thermal conductivities to those undoped counterparts at a similar porosity level, we find a considerably flat thermal conductivity versus temperature (k-T) curve, suggesting the existence of a strong phonon scattering source, which is inferred as rattlers. In addition, after the segmentation of the fluorite phase, the thermal conductivity of corresponding coatings rises considerably, indicating that the fluorite phase has a higher thermal conductivity than that of pyrochlore phase. Moreover, while the as-sprayed coatings show a clear indication of radiative thermal conduction beyond 1000 °C, the thermal conductivity of annealed coatings do not show such an uprising trend after 1000 °C, suggesting that the radiative thermal conduction has been greatly suppressed. The reason is proposed as the formation of local dipoles due to local enrichment of certain elements influences the propagation of electromagnetic waves and thus suppresses the radiative thermal conduction.
               
Click one of the above tabs to view related content.