LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions

Photo by talesbyjen from unsplash

Abstract High electric field-induced strain with ultralow hysteresis, which is often generated based on electrostrictive effects in ferroelectric materials, is highly desired due to its potential applications in high-precision displacement… Click to show full abstract

Abstract High electric field-induced strain with ultralow hysteresis, which is often generated based on electrostrictive effects in ferroelectric materials, is highly desired due to its potential applications in high-precision displacement actuators. In this paper, (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 [(1-x)(PMN-PT)-xBZN] ceramics were fabricated by a solid-state reaction method. The effect of Ba(Zn1/3Nb2/3)O3 (BZN) content on dielectric and electrostrictive properties in relaxor ferroelectric PMN-PT solid solutions was investigated in detail by dielectric spectra, polarization-electric field (P-E) hysteresis loops and strain-electric field (S-E) curves. With an increasing BZN content, the temperature stability of the dielectric permittivity of (1-x)(PMN-PT)-xBZN is improved due to the formation of two coexistent phases. A high electrostrictive strain (~0.17% at 60 kV/cm) with an ultralow hysteresis (

Keywords: zn1 3nb2; xba zn1; relaxor ferroelectric; pbtio3 xba; mg1 3nb2; 3nb2 pbtio3

Journal Title: Ceramics International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.