LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NO2 and H2 sensing properties for urchin-like hexagonal WO3 based on experimental and first-principle investigations

Photo from wikipedia

Abstract An intricate sea-urchin-like hexagonal WO3 nanostructure was synthesized by a facile hydrothermal approach. Sensing properties of the as-fabricated sensor exhibited surpassing response and selectivity for NO2 in comparison of… Click to show full abstract

Abstract An intricate sea-urchin-like hexagonal WO3 nanostructure was synthesized by a facile hydrothermal approach. Sensing properties of the as-fabricated sensor exhibited surpassing response and selectivity for NO2 in comparison of H2 after corroborating the composition, phase-purity and surface morphology using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Formation of the urchin-like structure was ascribed to the capping effects of potassium sulfate that prompts the anisotropic growth of WO3, leading to hierarchical complex with a large surface-volume ratio. In particular, first-principle calculation had provided a new perspective for us to delve into the sensing process of H2 and NO2 from an atomic level. It was found that the sensing properties mainly arose from the tuning of electronic structure and electrons transfer between the adsorbed gas and the sensitized surface along with the charge relocation between them. Finally, a plausible mechanism was proposed as theoretical guidance for achieving high-performance sensors experimentally and supposedly.

Keywords: sensing properties; microscopy; urchin like; first principle; hexagonal wo3; like hexagonal

Journal Title: Ceramics International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.