Abstract This paper analyzes the ultrarrapid microwave sintering process versus the conventional sintering process of the nanocrystalline composite (1-x)PMN-PT/(x)CoFe2O4, synthetized by the polymeric precursor method based on the novel one… Click to show full abstract
Abstract This paper analyzes the ultrarrapid microwave sintering process versus the conventional sintering process of the nanocrystalline composite (1-x)PMN-PT/(x)CoFe2O4, synthetized by the polymeric precursor method based on the novel one pot methodology aiming to achieve particulate composites ensuring an exceptionally homogeneous two-phase distribution. Main attention was paid to the sintering method effect on the microstructural attribute and physical properties. The activation energy for the initial stage of conventional sintering was calculated as a reference for microwave sintering. The microstructure characterizations revealed that microwave sintering without PbO loss control obtained a particulate composite with high homogeneous fine microstructures and great distribution of the Fe2CoO4 phase in the PMN-PT matrix with high electrical resistivity. Furthermore, the results showed that the sintering method has a substantial effect on their grain size and consequently on magnetoelectric properties.
               
Click one of the above tabs to view related content.