LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexural modulus of SiC/SiC composites sintered by microwave and conventional heating

Photo from wikipedia

Abstract To deeply study the variation mechanisms of mechanical properties, flexural modulus of SiC fibers reinforced SiC matrix (SiC/SiC) composites prepared by conventional and microwave heating at 800 °C–1100 °C was discussed… Click to show full abstract

Abstract To deeply study the variation mechanisms of mechanical properties, flexural modulus of SiC fibers reinforced SiC matrix (SiC/SiC) composites prepared by conventional and microwave heating at 800 °C–1100 °C was discussed in detail. The elastic modulus of fibers and matrix, interface bonding strength and porosity of SiC/SiC composites were considered together to analyze the changing tendencies and differences in their flexural modulus. The elastic modulus of fiber and matrix was determined by nanoindentation technique and interface characteristics applying fiber push-out test. The porosity and microstructure examinations were characterized by mercury intrusion method, X-ray Diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, two conflicts between the changing trends of elastic modulus and chemical compositions of composite components were focused and explained. Results indicate that three factors played different roles in the flexural modulus of SiC/SiC composites and residual tensile stress in composite components led to the conflicts between their elastic modulus and chemical compositions.

Keywords: modulus sic; flexural modulus; sic sic; sic composites; elastic modulus

Journal Title: Ceramics International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.