Abstract Herein, a homogeneously distributed and well-orientated ceramic-CNT composite fibre (Si3N4/SiC/CNTs) has been prepared using carbon nanotube fibres (CNTFs) premixed with silicon powder, followed by the reaction-bonded sintering process. The… Click to show full abstract
Abstract Herein, a homogeneously distributed and well-orientated ceramic-CNT composite fibre (Si3N4/SiC/CNTs) has been prepared using carbon nanotube fibres (CNTFs) premixed with silicon powder, followed by the reaction-bonded sintering process. The SiC layers around the CNT bundles interspersed in the composite are formed during the silicon reaction stage through the contact of silicon and CNTs, and the densification of the ceramic through the further reaction-bonded silicon carbide and nitride. Due to strong interface bonding, the composite fibres exhibit the potential for CNT-based damage sensing with a tensile strength upto 225 Mpa. Furthermore, the high-volume distribution of CNT sresults in a significant enhancement of the electrical and thermal conductivities as well as photoluminescence properties. Our work provides a useful approach for thefabrication of multifunctional fibres for imaging, engineering, and other complex applications.
               
Click one of the above tabs to view related content.