LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, characterization, and ceramization of a carbon-rich SiCw-ZrC-ZrB2 preceramic polymer precursor

Abstract A precursor (PBSZ) for SiCw-ZrC-ZrB2 hybrid powder was synthesized by chemical reaction of phenol, paraformaldehyde, zirconium oxychloride, boric acid and tetraethylorthosilicate. Results show that zirconium, silicon and boron atoms… Click to show full abstract

Abstract A precursor (PBSZ) for SiCw-ZrC-ZrB2 hybrid powder was synthesized by chemical reaction of phenol, paraformaldehyde, zirconium oxychloride, boric acid and tetraethylorthosilicate. Results show that zirconium, silicon and boron atoms have been successfully introduced into the branched structure. Decomposition of PBSZ is completed at 800 °C, and it gives amorphous carbon, SiO2, B2O3 and ZrO2 with a yield of 38% at 1200 °C. During the pyrolysis process, ZrB2 and SiC form at about 1500 °C, followed by the appearance of ZrC when the amount of B2O3 is limited. Highly crystallized ZrB2–ZrC–C powder with ZrB2 and ZrC grains evenly distributed in the carbon matrix together with randomly distributed SiC whiskers are obtained after heat-treated at 1800 °C. Further heated at 1900 °C, ZrB2 and ZrC grains grow from 200 to 500 nm, while SiC whiskers show a much smaller diameter size and tend to grow on the ZrB2–ZrC–C block surface. The morphology difference is caused by the larger gas supersaturation and accommodation coefficient of the pore channels on the block surface. In addition, defects of the carbon matrix are cumulated to the highest at 1500 °C and the structure-ordered carbon is obtained after heat treated at 1900 °C.

Keywords: sicw zrc; zrb2 zrc; zrb2; zrc; carbon; zrc zrb2

Journal Title: Ceramics International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.