LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CaAl2Cr2O7: Formation, synthesis, and characterization of a new Cr(III) compound under air atmosphere in the Al2O3–CaO–Cr2O3 system

Photo from wikipedia

Abstract Despite huge potential, Al2O3–CaO–Cr2O3 system has been one of the least investigated one due to the generation of carcinogenic and toxic Cr(VI) compounds. Herein, we investigated the system under… Click to show full abstract

Abstract Despite huge potential, Al2O3–CaO–Cr2O3 system has been one of the least investigated one due to the generation of carcinogenic and toxic Cr(VI) compounds. Herein, we investigated the system under air atmosphere varying Cr2O3 while keeping Al2O3:CaO ratio constant in order to identify the Cr(VI) dominant region, eventually to avoid it. The Ca4Al6CrVIO16 phase predominantly formed in the air atmosphere with Cr2O3 content up to ∼12 mol%. However, an unprecedented Cr(III) phase appeared under air at higher Cr2O3 content (26.43 mol%). We then synthesized the new polycrystalline ternary Cr(III) compound (CaAl2Cr2O7) at 1500 °C under air atmosphere for the first time. A trigonal symmetry of hexagonal crystal family with space group P3 (143), lattice parameters a = b = 7.7909 A and c = 7.6506 A were determined from the X-ray powder diffraction pattern study. Electron microscope studies revealed uniform hexagonal microcrystals with similar lattice parameters. Most significantly, the binding energies of 586.1 and 576.2 eV for Cr2p1/2 and Cr2p3/2 respectively implied the +3 oxidation state of Cr in this compound.

Keywords: system; al2o3 cao; cr2o3; air; compound; air atmosphere

Journal Title: Ceramics International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.