LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile synthesis of a novel Fe3O4-rGO-MoO3 ternary nano-composite for high-performance hybrid energy storage applications

Photo from wikipedia

Abstract Supercapacitors (SCs) have been considered as inspiring energy storage devices due to the long cycle lifetime and high power densities. However, their energy density is limited due to the… Click to show full abstract

Abstract Supercapacitors (SCs) have been considered as inspiring energy storage devices due to the long cycle lifetime and high power densities. However, their energy density is limited due to the low capacitance of cathode materials and inferior cycling stability at practically useable potential windows >1.2 V. In this paper, we demonstrate the synthesis of a novel ternary Fe3O4-rGO-MoO3 nano-composite (FGM) with nanoparticles-like morphology (NPs) by utilizing the fast and facile microwave hydrothermal process. The optimized composition of FGM nanocomposite is characterized by the XPS, EDS, Raman, SEM, TEM and HRTEM techniques. The FGM-NPs supported on the carbon cloth (FGM@CC) electrode is used to investigate the electrochemical charge storage properties in basic potassium hydroxide (KOH) electrolyte. The charge-storage properties of the FGM@CC electrode were studied by the CV, GCD and EIS techniques. The obtained results of FGM@CC electrode in aqueous electrolyte showed excellent electrochemical performance as compared with single metal oxides: maximum specific capacitance of 1666.50 F g−1 (FGM@CC), 1075.26 F g−1 (Fe3O4 NPs) and 952.38 F g−1 (MoO3 NPs) at a current density of 2.5 A g−1. The capacitance retention was 95.01% (FGM@CC), 94.1% (Fe3O4 NPs) and 92.5% (MoO3 NPs) after 5000 cycles. Further, the charge storage mechanism is analyzed in the light of power's law and systematical investigated the capacitive and diffusion controlled based stored charge in FGM@CC electrode. Thus FGM nano-composite showed best performance as the cathode material for the next generation flexible supercapacitors.

Keywords: storage; moo3; nano composite; energy; fe3o4; performance

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.