LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of micron sized particle on the electrochemical properties of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode materials

Photo from wikipedia

Abstract Particle size plays an important role in the electrochemical properties of cathode materials for lithium-ion battery, and the sizes of cathode powders are often designed to specific scales to… Click to show full abstract

Abstract Particle size plays an important role in the electrochemical properties of cathode materials for lithium-ion battery, and the sizes of cathode powders are often designed to specific scales to obtain desired rate capacity, cyclic stability, etc. Nano-sized or micron-sized primary/secondary particles were both reported to be helpful to heighten the electrochemical properties of the same material system. However, the relationship between particle size and electrochemical properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM-811) has not been discussed in detail. Here, we prepared the pristine NCM-811 powders with various micro-sized particles by using solid state reaction, and investigated the influence of particle size on the electrochemical properties of typical NCM-811 cathode material, to clarify the importance of size effect. The result indicates that pristine NCM-811 cathode powders with D50 = 7.7 μm displayed the best initial discharge specific capacity (224.5 and 169.1 mA h/g at 1/20 C and 1 C rate, respectively) and retention capacity (71.0% at 1 C rate) after 100th cycling at room temperature. The mutual acting mechanism in terms of layered structure, cation mixing degree, polarization state, charge-transfer resistance, and the diffusion ability of lithium-ion was confirmed by XRD, XPS, CV and EIS analyses, respectively.

Keywords: rich lini0; electrochemical properties; cathode materials; cathode; lini0 8co0; micron sized

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.