LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Nb substitution on magnetic, ferroelectric and photocatalytic properties of Bi0.95Sm0.05Fe1-Nb O3 (0 ≤ x ≤ 0.1) nanoparticles

Photo by ninjason from unsplash

Abstract The single phase Bi0.95Sm0.05Fe1-xNbxO3 (0 ≤ x ≤ 0.1) nanoparticles were synthesized by the sol-gel route, and the effect of Nb substitution on their magnetic, ferroelectric and photocatalytic properties were studied. X-ray diffractometry… Click to show full abstract

Abstract The single phase Bi0.95Sm0.05Fe1-xNbxO3 (0 ≤ x ≤ 0.1) nanoparticles were synthesized by the sol-gel route, and the effect of Nb substitution on their magnetic, ferroelectric and photocatalytic properties were studied. X-ray diffractometry confirms a phase transformation from rhombohedral to orthorhombic with an increase in Nb substitution. The grain size decreases significantly, and the morphology of grains becomes homogeneous with the increase of Nb concentration. The maximum remnant magnetization (0.014 emu/g), coercivity (565 Oe) and polarization (0.592 μC/cm2) are observed in Bi0.95Sm0.05Fe0.9Nb0.1O3. It has been observed that the energy band gap has been slightly reduced from 2.14 to 2.03 eV with Nb substitution, indicating an improvement of photocatalytic activity. The methylene blue degradation is used to represent the photocatalytic ability of Bi0.95Sm0.05Fe1-xNbxO3 nanoparticles. The highest degradation efficiency (~74%) of methylene blue is obtained in Bi0.95Sm0.05Fe0.93Nb0.07O3, which is much higher than that of Bi0.95Sm0.05FeO3 (~51%) and can be attributed to the optimum particle size and the smallest energy band gap.

Keywords: magnetic ferroelectric; 95sm0 05fe1; substitution magnetic; substitution; effect substitution; bi0 95sm0

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.