LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The microstructure and mechanical properties of Ni/Al2O3 composites by in-situ generated CaAl12O19 and ZrO2 via hot pressing sintering

Photo from archive.org

Abstract Ni/Al2O3 composites with a varying mass fraction of CaZrO3 (0–12 wt%) were prepared by vacuum hot pressing sintering at 1650 °C under a pressure of 30 MPa for 30 min to investigate how… Click to show full abstract

Abstract Ni/Al2O3 composites with a varying mass fraction of CaZrO3 (0–12 wt%) were prepared by vacuum hot pressing sintering at 1650 °C under a pressure of 30 MPa for 30 min to investigate how CaZrO3 affect the mechanical properties and morphology of the composites. The results show that CaZrO3 can react with Al2O3 and form new strengthening and reinforcing phases of CaAl12O19 and ZrO2, which can promote complete densification and solve the problem of uneven distribution due to the poor wettability between Al2O3 and Ni. Additionally, composites showed satisfactory mechanical properties when 6.0–9.0 wt% CaZrO3 was added and the major toughening mechanism involved the typical fracture of delamination and the transgranular mode.

Keywords: microstructure mechanical; pressing sintering; mechanical properties; caal12o19 zro2; al2o3 composites; hot pressing

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.