LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of H2Se concentration on Se-rich CZTSSe absorbers sputtered with a ceramic quaternary target

Photo from wikipedia

Abstract Se-rich CZTSSe absorbers with large grains are important contributors to the performances of CZTSSe solar cells and can be fabricated by the selenization of as-sputtered CZTS precursors. To explore… Click to show full abstract

Abstract Se-rich CZTSSe absorbers with large grains are important contributors to the performances of CZTSSe solar cells and can be fabricated by the selenization of as-sputtered CZTS precursors. To explore the effects of the H2Se concentration in the annealing atmosphere on the growth of CZTSSe phases, sputtered CZTS precursors were subjected to annealing with a mixed gas of Ar and H2Se at different concentrations. A series of characterization techniques were employed to investigate the morphologies, phase structures, surface states, and elemental compositions of the annealed samples. The results demonstrate that the H2Se concentration in the annealing atmosphere can significantly affect the grain size, suppressing the decomposition of CZTSSe absorbers. When the H2Se concentration in the annealing atmosphere reaches 4.5 vol%, a selenium-enriched CZTSSe absorber that is composed of the pure kesterite structure and that has densely packed large grains and a high concentration of selenium was obtained. The highest efficiency of 10.12% of CZTSSe solar cells was achieved herein.

Keywords: concentration annealing; cztsse absorbers; cztsse; h2se concentration; rich cztsse; concentration

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.