LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solvothermal synthesis and characterizations of graphene-ZnBi12O20 nanocomposites for visible-light driven photocatalytic applications

Photo from wikipedia

Abstract The Bismuth based Zinc metal oxide (ZnBi12O20) nanorods were synthesized via single step solvothermal approach. The characterization of synthesized hybridized structure was done by several analysis such as X-ray… Click to show full abstract

Abstract The Bismuth based Zinc metal oxide (ZnBi12O20) nanorods were synthesized via single step solvothermal approach. The characterization of synthesized hybridized structure was done by several analysis such as X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UVvis–DRS), Fourier transform-infrared spectroscopy (FT–IR), Thermogravimetric analysis (TGA), Raman spectroscopy, Field-Emission scanning electron microscopy (FESEM), Energy dispersive analysis of X-rays (EDX), High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy. The photocatalytic activity of ZnBi12O20 and an incorporation of varying weight percentages of GO (1–4 wt %) into ZnBi12O20 catalyst (GZBC) were analyzed under visible light irradiation by the degradation of an aqueous solution of Methylene blue (MB) and Methyl orange (MO) dye. Among various developed nanocomposites, 3 wt% GZBC reduced graphene oxide exfoliated nanocomposites has revealed the degradation efficiency as 96.04, 94.52% at 100 and 120 min for MB and MO respectively with enriched visible light absorption range. The photocatalytic property of 3 wt % reduced graphene oxide exhibits higher degradation behavior than that of other synthesized nano-composites.

Keywords: microscopy; visible light; characterizations graphene; spectroscopy; synthesis characterizations; solvothermal synthesis

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.