LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites

Photo by nci from unsplash

Abstract The impact of SiAlON on densification behavior and microstructure of the ZrB2-SiC composite was investigated. ZrB2, SiC, and SiAlON were used as the initial materials to produce ZrB2-SiC composite… Click to show full abstract

Abstract The impact of SiAlON on densification behavior and microstructure of the ZrB2-SiC composite was investigated. ZrB2, SiC, and SiAlON were used as the initial materials to produce ZrB2-SiC composite by hot pressing at 1900 °C. A fully dense composite was obtained having ~99.9% relative density. High-resolution X-ray diffraction (HRXRD) assessment verified the in-situ formation of ZrC, and the presence of residual carbon, SiAlON, and ZrB2 and SiC phases in the as-sintered ceramic. Furthermore, the thermodynamic calculations confirmed the results attained by HRXRD. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized for the microstructural investigation. SEM fractographs indicated the impact of SiAlON on the hindering of grain growth and the formation of flaky phases (graphitized carbon or solidified liquid phase) at the grain boundaries. TEM studies revealed the presence of a transparent glassy phase at the particle interfaces. A significant impact of liquid phase sintering was also affirmed in the clean interfaces.

Keywords: addition; microscopy; sialon; zrb2 sic; microstructure

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.