LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Composition gradient (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 film with improved dielectric, piezoelectric and ferroelectric temperature stability

Photo from wikipedia

Abstract Lead-free (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (BZT-BCT) possesses comparable piezoelectric constant with lead zirconate titanate (PZT), but its poor temperature electric performances stability and low Curie temperature limit its application. Here we designed… Click to show full abstract

Abstract Lead-free (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (BZT-BCT) possesses comparable piezoelectric constant with lead zirconate titanate (PZT), but its poor temperature electric performances stability and low Curie temperature limit its application. Here we designed composition graded BZT-BCT films with improved temperature stability of piezoelectric, ferroelectric, and dielectric performances over a wide temperature range, and the d33 reaches 21 pm/V with hysteresis loop even at 180 °C, which is far above the Curie temperature of BZT-BCT ceramic and BZT-0.5BCT film. The excellent temperature stability is ascribed to the lattice distortion and strain gradient in the grains caused by ions diffusion, and could suppress phase transition. This work could bring forward a feasible design for dielectric/piezoelectric/ferroelectric devices operating in harsh temperature environment.

Keywords: temperature; temperature stability; piezoelectric ferroelectric; 7ca0 tio3; stability; ba0 7ca0

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.