LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of anionic and non-ionic surfactants on the synthesis of core-shell Fe3O4@TiO2 nanocomposite synthesized by hydrothermal method

Photo by javardh from unsplash

Abstract Magnetite spinel nanoparticles (Fe3O4) coated titanium dioxide has been prepared by the solvo-hydrothermal method for application in dye degradation and wastewater remediation. The core-shell Fe3O4@TiO2 nanoparticles have been synthesized… Click to show full abstract

Abstract Magnetite spinel nanoparticles (Fe3O4) coated titanium dioxide has been prepared by the solvo-hydrothermal method for application in dye degradation and wastewater remediation. The core-shell Fe3O4@TiO2 nanoparticles have been synthesized using titanium butoxide (TBT) and ferric chloride as precursors. In this method, firstly, magnetite nanoparticles have been prepared through a solvothermal process using ethylene glycol as a solvent. Then, titanium butoxide was used as a precursor to synthesize Fe3O4@TiO2 core-shell nanoparticles using the hydrothermal method. The surfactants that were added, in separate synthetic processes, were anionic oleic acid and Sodium Dodecyl sulfonate, and non-ionic Polyvinylpyrrolidone and Polyethylene glycol. The effects of the various surfactants on the fabrication of core-shell magnetic nanoparticles were studied. Various characterization methods have been established to examine the morphology and magnetization features of the nanostructured particles, such as XRD, FTIR, TEM, FESEM, UV-spectroscopy, and VSM, etc., which validated the formation of Titania coated magnetite nanoparticles. The TiO2 shell formation drastically reduces the saturation magnetization of the magnetic nanoparticles. The Oleic acid as a surfactant produces the smallest nanoparticles. The PVP coating is best amongst these surfactants for the retention of saturation magnetization upon coating.

Keywords: shell; fe3o4 tio2; core shell; hydrothermal method

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.