Abstract High-entropy metal boron carbonitride ceramic powders including (Ta0.2Nb0.2Zr0.2Hf0.2W0.2)BCN, (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)BCN, and (Ta0.2Nb0.2Zr0.2Ti0.2W0.2)BCN, were successfully synthesized via mechanical alloying at room temperature. Results show that for the first step of 10 h… Click to show full abstract
Abstract High-entropy metal boron carbonitride ceramic powders including (Ta0.2Nb0.2Zr0.2Hf0.2W0.2)BCN, (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)BCN, and (Ta0.2Nb0.2Zr0.2Ti0.2W0.2)BCN, were successfully synthesized via mechanical alloying at room temperature. Results show that for the first step of 10 h milling, the amorphous BCN phases are observed. After 24 h of second step milling, the as-synthesized high-entropy ceramics exhibit a single face-centered cubic solid solution structure with high compositional uniformity from nano-scale to micron-scale. When heated to 1500 °C for 30min in flowing Ar, the as-prepared high-entropy ceramic powders still show relatively high thermal stability; however, some metals oxides like HfO2 and ZrO2 are detected due to the pre-existing oxides on sample surfaces. After heat treatment, some amorphous phases are still retained. This work suggests a new processing route on the synthesis of high-entropy metal boron carbonitride ceramics.
               
Click one of the above tabs to view related content.