LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic effect of Ce4+ modification on the electrochemical performance of LiNi0·6Co0·2Mn0·2O2 cathode materials at high cut-off voltage

Photo by igormiske from unsplash

Abstract Ni-rich layered LiNi0·6Co0·2Mn0·2O2 materials have recently drawn much attention for their high specific capacity. However, they still suffer from the cycling instability arising from Li+/Ni2+ ions mixing in crystal… Click to show full abstract

Abstract Ni-rich layered LiNi0·6Co0·2Mn0·2O2 materials have recently drawn much attention for their high specific capacity. However, they still suffer from the cycling instability arising from Li+/Ni2+ ions mixing in crystal structure and harmful side reactions with electrolyte, especially charged at high cut-off voltage to achieve higher energy density. In this study, the Li(Ni0·6Co0·2Mn0.2)O2 (NCM622) cathode materials were prepared by sol-gel method, and Ce4+ modification was utilized to improve cycling stability and rate performance. Through XRD refinement, XPS, SEM and TEM characterization, it was found that in the case of 0.5 at% level, Ce4+ ions not only entered into the crystal lattice to replace transition metal ions, but also produced CeO2 coating on the surface of NCM622 particles. The results of electrochemical performance showed that after 100 cycles at 1 C rate, the capacity retention of NCM-0.5 sample increased by 11.03% compared to pristine sample. Besides, in the case of 5 C, the capacity of NCM-0.5 sample reached to 114.92 mAh·g−1, much higher than that of NCM-0 (91.92 mAh·g−1). The findings indicate that it is the synergistic effect of Ce4+ that endows NCM622 excellent cycling stability and rate performance at high cut-off voltage.

Keywords: cut voltage; ce4; high cut; performance; 6co0 2mn0

Journal Title: Ceramics International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.