LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical properties and strengthening mechanism of SiCf/SiC mini-composites modified by SiC nanowires

Photo by butaalex from unsplash

Abstract The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC… Click to show full abstract

Abstract The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC layer was coated on the SiCf using a chemical vapour infiltration (CVI) method. Then, SiCNWs were successfully coated on the surface of SiCf/PyC using the electrophoretic deposition method. Finally, a thin PyC layer was coated on the surface of SiCf/PyC/SiCNWs. Three mini-composites, SiCf/PyC/SiC, SiCf/PyC/SiCNWs/SiC, and SiCf/PyC/SiCNWs/PyC/SiC, were fabricated using the typical precursor infiltration and pyrolysis method. The morphologies of the samples were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. Tensile and single-fibre push-out tests were carried out to investigate the mechanical performance and interfacial shear strength of the composites before and after oxidization at 1200 °C. The results revealed that the SiCf/PyC/SiCNWs/SiC composites showed the best mechanical and anti-oxidation performance among all the composites investigated. The strengthening and toughening is mainly achieved by SiCNWs optimization of the interfacial bonding strength of the composite and its own nano-toughening. On the basis of the results, the effects of SiCNWs on the oxidation process and retardation mechanism of the SiCf/SiC mini-composites were investigated.

Keywords: sicf sic; sicf pyc; pyc; mini composites

Journal Title: Ceramics International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.