LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing piezoelectric properties of Ba0.88Ca0.12Zr0.12Ti0.88O3 lead-free ceramics by doping Co ions

Photo from wikipedia

Abstract The piezoelectric properties of lead-free Ba0.88Ca0.12Zr0.12Ti0.88O3 (BCZT) ceramics were greatly optimized by doping Co ions using a CoO powder. The role of Co2+ and Co3+ in enhancing the piezoelectric… Click to show full abstract

Abstract The piezoelectric properties of lead-free Ba0.88Ca0.12Zr0.12Ti0.88O3 (BCZT) ceramics were greatly optimized by doping Co ions using a CoO powder. The role of Co2+ and Co3+ in enhancing the piezoelectric properties and the relationship between the content ratio Co3+/Co2+ and piezoelectric performance were studied. The X-ray diffraction patterns of all samples indicated that crystalline phases were a BCZT-based single perovskite structure regardless of the Co ion content. The phase transition temperature and lattice distortion degree were related to the Co ion content and the content ratio Co3+/Co2+ because Co2+ resulted in higher oxygen vacancy generation, whereas Co3+ induced larger lattice shrinkage. The ceramic containing 0.10 wt% of Co ion showed the best piezoelectric and dielectric performance with the highest piezoelectric constant d33 ~ 490 p.m./V at room temperature and the highest Curie temperature Tc of 110 °C, which increased by 29% and 16%, respectively. In this case, the content ratio Co3+/Co2+ reached the maximum value of 0.86. The high piezoelectric properties and phase stability of BCZT ceramics by doping Co ions make these ceramics promising piezoelectric materials for practical applications.

Keywords: co2; co3; doping ions; piezoelectric properties; ba0 88ca0; lead free

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.