LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and microwave dielectric properties of BaAl2−2Li2Si2O8-2 ceramics

Photo from archive.org

Abstract BaAl2-2xLi2xSi2O8-2x (x = 0, 0.005, 0.0075, 0.01, 0.02, 0.03) ceramics were synthesized by solid-state sintering method. Based on density functional theory, the first-principle calculations provided by the Cambridge Sequential Total Energy… Click to show full abstract

Abstract BaAl2-2xLi2xSi2O8-2x (x = 0, 0.005, 0.0075, 0.01, 0.02, 0.03) ceramics were synthesized by solid-state sintering method. Based on density functional theory, the first-principle calculations provided by the Cambridge Sequential Total Energy Package (CASTEP) software were introduced to the BaAl2Si2O8 (BAS) system. In an effort to confirm the site occupied by Li+, we discussed the formation energy and final energy of different positions of Li+ doped BAS. The result demonstrated that Li+ should substitute Al3+ to promote the hexacelsian-to-celsian transformation with the aid of generated oxygen vacancies. The sintering behavior, crystal structure, surface appearance, and microwave dielectric properties of samples were investigated. Completely transformed celsian could be obtained when x = 0.005–0.03, which lowered the sintering temperature from 1400 °C (x = 0) to 1300 °C (x = 0.03), as well as strikingly improved the compactness, quality factor (Q × f) value and temperature coefficient of resonant frequency (τf) of BAS ceramics. When x = 0.1, unveiling the significant effects of Al-position ion substitution, BaAl1.98Li0.02Si2O7.98 ceramic sintered at 1350 °C for 5 h exhibited a supreme Q × f value of 48,620 GHz, and the er and τf values were 6.99 and -23.29 × 10−6 °C−1, respectively.

Keywords: dielectric properties; baal2 2li2si2o8; properties baal2; microwave dielectric; structure microwave

Journal Title: Ceramics International
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.