Abstract Novel reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors based on the emission of 4G5/2 → 6H9/2 transition at 651 nm with the chromatic coordinate of (0.633, 0.366) were synthesized. The crystal structure and chemical purity were… Click to show full abstract
Abstract Novel reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors based on the emission of 4G5/2 → 6H9/2 transition at 651 nm with the chromatic coordinate of (0.633, 0.366) were synthesized. The crystal structure and chemical purity were identified in detail. Under the 407 nm excitation, the optimum concentration of Sm3+ ion was found to be 5 mol% dominated by the dipole-dipole interaction in the Ca2GdNbO6 host material. The color purity of the sample with optimum doping was estimated to be about 78.38%. Besides, the thermal stability was also studied, and it was further found that the emission intensity remained 65.32% at 423 K. The packaged white LED device exhibited excellent CRI and CCT values of 92.43 and 4896 K. Finally, the polydimethylsiloxane film with a stable structure and flexible property was prepared. These above results reveal that novel reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors can be applied in high CRI white communication and flexible display applications.
               
Click one of the above tabs to view related content.