Abstract With the view to improve the densification behaviour and mechanical properties of ZrB2-SiC ceramics, three synthesis routes were investigated for the production of ZrB2, prior to the fabrication of… Click to show full abstract
Abstract With the view to improve the densification behaviour and mechanical properties of ZrB2-SiC ceramics, three synthesis routes were investigated for the production of ZrB2, prior to the fabrication of ZrB2-20 vol. % SiC via spark plasma sintering (SPS). Two borothermal reduction routes, modified with a water-washing stage (BRW) and partial solid solution of Ti (BRS), were utilised, alongside a boro/carbothermal mechanism (BRCR) were utilised to synthesise ZrB2, as a precursor material for the production of ZrB2-SiC. It was determined that reduction in the primary ZrB2 particle size, alongside a diminished oxygen content, was capable of improving densification. ZrB2-SiC ceramics, with ZrB2 derived from BRW synthesis, exhibited a favourable combination of high relative density (98.6%), promoting a marked increase in Vickers hardness (21.4 ± 1.7 GPa) and improved thermal conductivity (68.7 W·m-1K-1).
               
Click one of the above tabs to view related content.