Abstract Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of… Click to show full abstract
Abstract Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of deep-red phosphors are still not well understood at present. An energy transfer strategy is a common and effective method to improve luminescence properties. In principle, the energy transfer process may occur when the sensitizer's emission spectra overlap with the activator's excitation spectra. In this work, Bi3+ and Mn4+ were incorporated into the matrix of Gd2MgTiO6 as sensitisers and activators, respectively. Mn4+ ions tend to occupy the [TiO6] octahedral site and the Bi3+ ions are expected to substituted in the site of Gd3+. The energy transfer process from Bi3+ to Mn4+ was realised and the photoluminescence (PL) intensity of Mn4+ increased with the doping content of Bi3+. Upon excitation at 375 nm, the PL intensity of Mn4+ increased to 116.4% when the doping concentration of Bi3+ reached 0.3%. Finally, the pc-LED devices were prepared by a Gd2MgTiO6:Bi3+, Mn4+ phosphor. The high red luminescence indicated that this phosphor has potential applications in indoor LED lighting.
               
Click one of the above tabs to view related content.