LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large electrostrain and high energy-storage of (1-x)[0.94(Bi0.5Na0.5) TiO3-0.06BaTiO3]-xBa(Sn0.70Nb0.24)O3 lead-free ceramics

Photo from wikipedia

Abstract (1-x)[0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3]-xBa(Sn0.70Nb0.24)O3 (abbreviated as BNTBT-100xBSN) lead-free ceramics were fabricated with a relative density greater than 96 %, and the structure as well as performance were tested. BNTBT-100xBSN ceramics are pseudo-cubic… Click to show full abstract

Abstract (1-x)[0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3]-xBa(Sn0.70Nb0.24)O3 (abbreviated as BNTBT-100xBSN) lead-free ceramics were fabricated with a relative density greater than 96 %, and the structure as well as performance were tested. BNTBT-100xBSN ceramics are pseudo-cubic perovskite structure, with dense surface morphology. Doping BSN can effectively reduce the dielectric loss of ceramics and increase the relaxation properties to a certain extent. The randomly distributed ferroelectric phase was replaced by polar nano regions, thereby improving the electro-strain and energy storage performance of the system. The largest electro-strain and the corresponding normalized strain (d33*) reach ∼ 0.43 % and 633 pm/V respectively in the BNTBT-1BSN ceramic. The largest effective energy storage density reaching ∼ 1.28 J/cm3 was tested in BNTBT-2BSN. BNTBT-100xBSN ceramics provide a feasible idea for the systematic research of lead-free ferroelectrics and improvements in electro-strain and energy storage applications.

Keywords: energy storage; bi0 5na0; energy; 5na0 tio3; lead free

Journal Title: Ceramics International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.