LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High luminescent thermal stability and water resistance of K2SiF6:Mn4+@CaF2 red emitting phosphor

Photo from wikipedia

Abstract K2SiF6:Mn4+ (KSF:Mn4+), as an efficient red-emitting phosphor, has a promising application in WLEDs (white light-emitting diodes). However, poor moisture resistance performance still hinders its deeper commercialization. Here, KSF:Mn4+@ CaF2… Click to show full abstract

Abstract K2SiF6:Mn4+ (KSF:Mn4+), as an efficient red-emitting phosphor, has a promising application in WLEDs (white light-emitting diodes). However, poor moisture resistance performance still hinders its deeper commercialization. Here, KSF:Mn4+@ CaF2 with high water resistance and luminescent thermal stability has been prepared though H2O2-free hydrothermal method and surface coating process. Both KSF:Mn4+ and KSF:Mn4+@CaF2 all have high luminescent thermal stability, due to negative thermal quenching (NTQ) effect. Mechanism of the NTQ has been discussed and suggested as thermal-light energy conversion mechanism. Compared with KSF:Mn4+, water resistance of KSF:Mn4+@CaF2 is greatly improved by coating of CaF2, because the outer shell of CaF2 can effectively prevent the [MnF6]2- group on the surface of the phosphor from being hydrolyzed into MnO2. The results of water resistance test shows that after immersing in water for 360 min (6 h), luminescent intensity of the uncoated product drops to 41.68% of the initial one, while that of the coated product remains to have 88.24% of its initial one. Warm white light with good luminescent performances (CCT = 3956 K and Ra = 89.3) is got from prototype WLEDs assembled by using the optimal coated sample. The results suggest that the optimal coated sample has potential application in blue-based warm WLEDs.

Keywords: ksf mn4; water; luminescent; mn4; caf2; resistance

Journal Title: Ceramics International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.