LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of SnO2@MnO2@graphite nanosheet with high reversibility and stable structure as a high-performance anode material for lithium-ion batteries

Photo from wikipedia

Abstract In this study, SnO2@MnO2@graphite (SMG) anode material is prepared via a facile ball-milling approach combined with hydrothermal treatment. SnO2 and MnO2 nanoparticles are evenly dispersed on numerous sheet-like graphite.… Click to show full abstract

Abstract In this study, SnO2@MnO2@graphite (SMG) anode material is prepared via a facile ball-milling approach combined with hydrothermal treatment. SnO2 and MnO2 nanoparticles are evenly dispersed on numerous sheet-like graphite. MnO2 can not only play a catalytic role for facilitating the conversion reaction of Sn/Li2O to SnO2, but also as a barrier to impede the coarsening of Sn in the composite. Meanwhile, graphite nanosheets could serve as an ideal volume expansion buffer and good electron conductor. Consequently, the SMG anode delivers superior reversible capacity of 1048.5 mAhg−1, ideal rate capability of 522.2 mAhg−1 at 5.0 A g-1 and stable long-life cyclic performance of 814.8 mAhg−1 at 1.0 A g-1 after 1000 cycles. This result indicates that the incorporation of MnO2, graphite nanosheet and SnO2 have a great potential in enhancing the performance of SnO2-based anode for battery applications.

Keywords: sno2 mno2; graphite nanosheet; mno2 graphite; performance; anode material; mno2

Journal Title: Ceramics International
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.